CPSIoTSec 2020 Virtual Event @ Orlando USA

Towards Robust Power Grid Attack

Protection using LightGBM with

Concept Drift Detection and Retraining

<u>Anand Agrawal</u> Marios Sazos Ahmed Al Durra Michail Maniatakos

- In this work we present a robust methodology to detect cyber attacks on the Power Grid
- Issues with the state-of-the-art methods:
 - Model-based approaches lack scalability and accuracy
 - Focus mostly on binary (attack/no attack) events, ignoring natural events
 - Machine learning-based model accuracy reduces overtime
- In this work:
 - We employ a realistic testbed to expose all attack surfaces of the platform
 - ► We use a Three-Class classifier (no attack/natural event/attack)
 - We introduce concept drift to maintain the model accuracy in the long-term

- Ensemble Learning
 - Multiple learners are trained in sequential or parallel way
 - LightGBM: Light Gradient Boosting Machine
 - · LightGBM excludes data instances with small gradients
 - · Converges faster and accurately

- Assumptions
 - Attacker has control over monitoring data
 - Compromised devices may be protection/monitoring or networking
- Examined attack scenarios:
 - > Data injection: Change phasor values in synchrophasor packets
 - Remote tripping injection: Sending close/trip command using relays
 - Relay setting change: Change the configuration of relay i.e. CT, VT ratio

- Benchmark Dataset¹
 - Consists of 3 bus system and 4 circuit breaker
 - Buses equipped with relays to control the circuit breakers
- Dataset description
 - Scenarios: Dataset consists of 37 scenarios
 - Events: Dataset broadly categorized as No Events, Natural, and Attack Events
 - Features: Comprises of 128 features correspond to phasor and magnitude of voltage and current

Feature	Description	Importance	Class	Description	Event Type	Scenario Id.
R2-PA6:IH R2-PA3:VH R3-PA6:IH	Relay2 Current Phase Angle Relay2 Voltage Phase Angle Relay3 Current Phase Angle	0.020763 0.019436 0.019231	0	Normal operation load changes	No Event	41
R2-PA7:VH R1-PM5:I snort_log	Relay2 Voltage Phase Angle Relay1 Current Phase Magnitude Log collected by IDS	0.019213 0.019079 0.000000	1	SLG Faults, Line Maintenance	Natural Event	1-6,13,14
control_panel_log R2: S R3-PA9:VH R4-PA9:VH	Log collected by control panel Status Flag for relays Relay3 Voltage Phase Angle Relay4 Voltage Phase Angle	0.000000 0.000000 0.000086 0.000089	2	Data Injection, Remote tripping, Relay setting change	Attack Event	7-12,15-20, 21-30, 35-40

https://www.sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

- Accuracy of reduced feature set and overall set
 - Accuracy of model trained from selected features is better
 - In multi-class accuracy increases with more features
- Other features
 - Number of iterations: 8000
 - Max_depth: 9, num_leaves: 50
 - boosting_type: Gradient Boosting (GDBT), Gradient-based One Side Sampling (GOSS)

Features	Binary-Class	Three-Class	Multi-Class
All	96.9	95.3	92.65
Subset	97.3	97.1	91.2

- Detect accuracy reduction
 - Divide dataset in chunks
 - Pass data to Massive online Analysis (MOA)² framework
 - Drift Detection Method and Early Drift Detection Method
 - Detection of drift at instances where accuracy is reduced substantially
- Retraining of model
 - LightGBM classifier is retrained based on drift detection
 - Model accuracy increases in fraction

² A Bifet, G Holmes, R Kirkby, and B Pfahringer. 2010. MOA: Massive Online Analysis. J. Mach. Learn. Res. 11 (2010)

Experimental Setup Schematic View

جامعـة نيويورك ابوظبي NYU ABU DHABI

8

Experimental Setup Physical View

- Evaluation Metrics and detection
 - Compare results against other machine learning approaches
 - Used Binary, Three, and Multi class label data

DNN			SVM			LightGBM (Our work)		
В	Т	М	в	Т	М	В	Т	М
68.53	61.26	10.36	83.17	79.05	20.64	97.38	96.99	93.11
78.16	78.26	13.48	78.57	78.57	24.34	97.38	96.98	92.76
68.86	68.72	6.01	69.44	69.43	19.05	97.38	96.98	92.76
78.16	78.26	13.48	78.57	78.57	24.34	97.28	96.98	92.76
	B 68.53 78.16 68.86 78.16	DNN B T 68.53 61.26 78.16 78.26 68.86 68.72 78.16 78.26	DNN B T M 68.53 61.26 10.36 78.16 78.26 13.48 68.86 68.72 6.01 78.16 78.26 13.48	DNN M B 68.53 61.26 10.36 83.17 78.16 78.26 13.48 78.57 68.85 68.72 6.01 69.44 78.16 78.26 13.48 78.57	DNN SVM B T M B T 68.53 61.26 10.36 83.17 79.05 78.16 78.26 13.48 78.57 78.57 68.86 68.72 6.01 69.44 69.43 78.16 78.26 13.48 78.57 78.57	DNN B T M B T M B T M 68.53 61.26 10.36 83.17 79.05 20.64 78.16 78.26 13.48 78.57 78.57 24.34 68.86 68.72 6.01 69.44 69.43 19.05 78.16 78.26 13.48 78.57 78.57 24.34	DNN Display="block">Display="block">SVM Light B T M B T M B 68.53 61.26 10.36 83.17 79.05 20.64 97.38 78.16 78.26 13.48 78.57 78.57 24.34 97.38 68.86 68.72 6.01 69.44 69.43 19.05 97.38 78.16 78.26 13.48 78.57 78.57 24.34 97.28	DNN SVM LightGM (0) B T M B T M B T 68.53 61.26 10.36 83.17 79.05 20.64 97.38 96.99 78.16 78.26 13.48 78.57 74.34 97.38 96.98 68.86 68.72 6.01 69.44 69.43 19.05 97.38 96.98 78.16 78.26 13.48 78.57 78.57 24.34 97.28 96.98

- · Dynamic retraining of model after drift detection
 - Retrain model after 50% accuracy loss
 - Binary classification and Three class accuracy increased to 98.02% and 97.73% respectively

• We compare against emulated or physical power system

- LightGBM outperforms other boosting techniques
- Existing solutions do not employ concept drift
- Our method performs best in three class data

Related Work	Classifier	Label	# of features	Acc. CD	
Our Work	LightGBM	Т	128	97.73%	1
[26]	Adaboost	М	128	93.54%	X
[10]	XGboost	Т	128	95%	×
[27]	SAE DL	В	128	94.91%	X
[22]	NNGE+STEM	М	128	93%	x
[21]	CNN	Т	150	94%	×

SAEDL: Stacked-Autoencoder Deep Learning, NNGE-STEM: Non Nested Generalized Exemplars State Extraction Method, CNN : Convolution Neural Network, B : Binary Class, T : Three Class, M : Multi Class, CD : Concept Drift This work-in-progress provides three main insights:

- Ability of dynamic retraining of ML based model
- Focus on three class recognition, to include natural events
- · Generalize the model for any power grid setup

Future work: We are in process of collecting more data with increased feature set, and we will also consider timestamp and drift based on timing.

Thank you for your time!